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Learning representation for source code is a foundation of many program analysis tasks. In recent years,

neural networks have already shown success in this area, but most existing models did not make full use of

the unique structural information of programs. Although abstract syntax tree (AST)-based neural models can

handle the tree structure in the source code, they cannot capture the richness of different types of substruc-

ture in programs. In this article, we propose a modular tree network that dynamically composes different

neural network units into tree structures based on the input AST. Different from previous tree-structural

neural network models, a modular tree network can capture the semantic differences between types of AST

substructures. We evaluate our model on two tasks: program classification and code clone detection. Our

model achieves the best performance compared with state-of-the-art approaches in both tasks, showing the

advantage of leveraging more elaborate structure information of the source code.
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1 INTRODUCTION

Source code representation learning is a set of techniques that allow a system to automatically dis-
cover the representations needed for feature detection or classification from source code. Due to
the significant progress in deep learning in recent years, modeling source code by deep neural net-
works has drawn more and more attention. Deep-learning based source code representation tech-
niques have achieved considerable success in many tasks in program analysis, including program
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Fig. 1. A simple C code snippet and its corresponding AST fragment. Beside each non-leaf node is the produc-

tion rule related to the semantic unit that contains this node and its children. Some nodes, mainly identifiers,

contain one or more values, whereas other nodes only contain a node type.

classification [22, 24], defect prediction [32, 37], code clone detection [34, 35], code summarization
[3, 16, 22], and malware detection [38].

As Hindle et al. [11] have shown, programming languages have many similar statistical prop-
erties with natural language. So when it comes to representing programs using deep learning
models, researchers tend to use models that have already shown success in natural language pro-
cessing rather than building new models for the source code. Some basic approaches [8, 20] split
the source code into a sequence of tokens like natural language sentences, where their models
include the convolutional neural network (CNN) [3, 15] and recurrent neural network (RNN) [8,
16, 20]. However, different from natural languages, whose structure is relatively simple, a pro-
gramming language contains complex and explicit structural information [1, 24]. These pieces of
structural information can be extracted from a program’s abstract syntax tree (AST). An example
of an AST in C programming language and its corresponding code snippet is presented in Figure 1.
An AST consists of a group of semantic units, and each one includes a non-leaf AST node and all
of its children. Different types of semantic units have different semantic meaning. For example, in
Figure 1, While nodes have two children—a condition node and a loop body node—and together
they build a loop sketch. The children of BinaryOp nodes are two operands, and together they
form a calculation on identifiers. Each type of semantic unit is defined by a grammar production
rule. As the grammar of a programming language contains a finite set of production rules, the to-
tal number of semantic unit types in a programming language is also finite. ASTs are constructed
from different semantic units, which form the complex structure of the source code.

There have already been several tree-structured neural network models for representing tree-
structured data, including tree-LSTM [31] and a tree-based convolutional neural network (TBCNN)
[24]. Although these models utilize the tree structure of input data, they share a common weakness:
they use the same neural network unit to model different kinds of AST semantic units. Although
this feature makes these models available for trees from arbitrary data domains, it also prevents
them from handling the differences between semantic units. Using only one neural network unit to
capture the meaning of all semantic units is apparently not enough, which can cause underfitting.

In this article, we propose Modular Tree Network (MTN), a dynamically composed tree-
structured neural network framework that models different AST semantic units with different
neural network modules. We select a group of semantic units related to program structure based
on the grammar of programming languages and design a unique neural module for each of them.
For an input AST, the network architecture is constructed with these neural modules based on the
specific structure of the AST. Then the vector representation of the input AST is calculated in a
bottom-up manner.
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We evaluate the performance of our model on two software engineering tasks: program clas-
sification and clone detection. In program classification, we propose a 293-class POJ dataset and
evaluate our model on it. Results show that our model achieves 1.8% higher accuracy than the
state-of-the-art approaches. In clone detection, we compare our model with CDLH on the OJClone
dataset, and our model improves the F1 score from 0.57 to 0.90.

The main contributions of this article are as follows:

(1) We propose a tree-structured neural network framework composed of multiple submod-
ules for learning a representation of source code fragment based on its AST.

(2) We employ this model and the representation it learns to complete two tasks on source
code analyzing: program classification and code clone detection.

(3) Our proposed model achieves better results compared to previous neural network models,
showing that utilizing more detailed semantic information of source code is advantageous.
We also show that MTN converges faster than baseline models and can learn better on
small datasets.

Article organization. The rest of the article is organized as follows. We describe the background
of deep learning in Section 2. We present the structure of our model MTN in Section 3. We describe
the application of MTN on two program analysis tasks in Section 4. We demonstrate and analyze
our experiments and results in Section 5. We show the threats to validity in Section 6 and list
related works in Section 7. Finally, in Section 8, we make a conclusion on our work.

2 BACKGROUND

In this section, we briefly introduce the background of our model MTN: tree-structured neural
networks, especially the recursive neural network (RvNN) and tree-LSTM.

2.1 Recursive Neural Network

The RvNN is the most basic type of tree-structured neural network. Suppose that a node j in a
binary tree has two children, c1 and c2, and its representation is computed from its children by

hj = tanh(W [hc1 : hc2] + b), (1)

where W is a weight matrix and b is a bias term. Since W is shared across all non-leaf nodes in
a tree, RvNNs require trees with a definite branching factor, such as binary trees. In addition, in
RvNNs, only leaf nodes take input vectors, so it is mostly used in structures like natural language
constituency trees, where the lexical tokens of a natural language sentence are all stored in their
leaf nodes.

2.2 Tree-LSTM

Tree-LSTM is a generalization of long short-term memory (LSTM) to tree-structured network
topologies [31]. LSTM is a variant of RNNs proposed to solve the problem of long-term depen-
dencies existing in traditional RNNs. In timestep t , a traditional RNN cell calculates the hidden
state of the current timestep ht by the input of current timestep xt and the hidden state of the
previous timestep ht−1, using the following equation:

ht = tanh(Wx j +Uht−1 + b), (2)

where W and U are different weight matrices for the input vector and hidden state. An LSTM
unit extends the traditional RNN cell with a forget gate f , an input gate i , an output gate o, and a
memory cell. The forget gate decides what information of the previous memory cell we choose to
forget, the input gate controls the extent of using new information to update the memory cell, and
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the output gate controls the extent to which the value in the cell is used to compute the hidden
state of the LSTM unit. Each gate takes x j and ht−1 with a different set of parameters W , U , and
b. Tree-LSTM shares these gates and the cell with the traditional LSTM, but for a node j in a tree,
instead of taking the hidden state of the previous timestep, a tree-LSTM unit takes the hidden
states of all of its children and feeds a combination of these states into its input and output gate.
For the forget gates, a tree-LSTM unit contains multiple forget gates with shared parameters, and
each one only receives the hidden state of its associated child.

Under these settings, there exist two versions of tree-LSTM: child-sum tree-LSTM and n-ary
tree-LSTM. We will briefly introduce these two variants and analyze their drawbacks.

2.2.1 Child-Sum Tree-LSTM. In child-sum tree-LSTM, for a node j, we sum up the hidden states
of all of its children and use this summation as the input hidden state of the input gate and output
gate. Child-sum tree-LSTM can be built on arbitrary tree structures. However, since changing the
order of children does not affect the result of the summation operation, its calculation process loses
the information of the order of children.

2.2.2 N-ary Tree-LSTM. Similar to RvNNs, n-ary tree-LSTM can only be applied on tree struc-
tures where the branching factor is at most N. Its main difference from child-sum tree-LSTM is that
n-ary tree-LSTM aims to leverage the order of children. Instead of summing up all children hidden
states like child-sum tree-LSTM, n-ary tree-LSTM associates each child with a different weight
matrixU . By introducing different parameters for different children, n-ary tree-LSTM can capture
more fine-grained semantic information, such as the difference in importance between children of
different positions.

When applying n-ary tree-LSTM to trees with indefinite branching factors, like ASTs, one need
to convert them into n-ary trees (often binary). This process not only destroys the original syntax
relationships between nodes in the original AST but also make ASTs deeper, which may cause
long-term dependency problems.

3 APPROACH

Our proposed model, MTN, refines the basic structure of child-sum tree-LSTM by replacing a part
of tree-LSTM units with neural modules designed for different AST semantic units. This idea of
building different neural modules for different semantic units can be applied to any programming
languages. However, we need to design different neural modules for semantic units in different
programming languages for the following reasons:

(1) Different programming languages may contain different semantic units. For example, C
contains Case statements, whereas Python does not have them, and Java has try . . .
catch statements, whereas C does not have them.

(2) Similar semantic units in different programming languages may have different form. For
example, in the AST of C, a For statement is defined by the production rule For �→
(init , cond,next , stmt ), whereas in Python, the production rule for the For statement is
For �→ (tarдet , iter ,body∗,orelse∗) (in which orelse seldom appears).

In this article, we only discuss MTN for C as an example, but the proposed model can be gener-
alized to other programming languages by designing new neural modules for different semantic
units. The overall framework of MTN is shown in Figure 2. The input of MTN is the AST represen-
tation of source code, and the output of MTN is a vector representation of the AST. In the following,
we show the general structure of MTN units and define a set of neural modules for semantic fea-
ture capturing in C programming language. Then we show the whole process of applying the MTN
model to calculate vector representations for ASTs.
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Fig. 2. The overall process of calculating vector representation for source code using MTN.

3.1 General Structure of an MTN Unit

In MTN, we replace the operation of summing up all children hidden states in child-sum tree-
LSTM by applying one of our designed neural modules. Given a node j, an MTN unit calculates its
hidden state by

˜hj = Ftype−j (hs1 , . . . ,hsnj
), (3)
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uj = tanh
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)
, (7)

c j = i j � uj +
∑

k ∈C (j )

fjk � ck , (8)

hj = oj � tanh(c j ). (9)

Here,W ,U ,b are parameters associated with the type of j and � is the element-wise product op-
erator. In Equation (3), MTN passes these hidden states through a neural network module designed
by us. Ftype−j is a unique neural module for the node type of j that receives the hidden states for
all children of j and produces one vector as an intermediate result. We will describe the details of
Ftype−j in Section 3.2. For the sake of time efficiency and implementational complexity, we only
design modules for several kinds of semantic units. For the remaining types of node without spe-
cially designed neural modules, we add up their children’s hidden state like child-sum tree-LSTM
instead of applying a module F . Equations (4) through (9) are the same as child-sum tree-LSTM,
which act as the input gate, forget gates, output gate, and memory cell for the MTN unit.

An MTN unit can be seen as a neural module (Equation (3)) wrapped by a tree-LSTM-like “con-
tainer” (Equations (4)–(9)) that contains a set of gates and memory cells. With MTN hidden sized , a
container has 8d2 + 4d parameters, which is the same as child-sum tree-LSTM. For the parameters
of gates and memory cells in the containers, we propose two strategies of parameter sharing:

MTN-a: W , U , b (the container parameters) in Equations (4) through (7) are shared across all
MTN units in a program AST.

MTN-b: We take the idea of using different network architecture and parameters from neural
modules to the whole MTN unit. For each type of semantic unit that has a unique Ftype module,
we associate it with a different set of corresponding container parametersW U and b along with
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Fig. 3. The two parameter sharing strategies of MTN: MTN-a (a) and MTN-b (b).

Table 1. Neural Modules for MTN

Semantic Unit Function Parameters

FuncDef→ decl, body hF unc Def = tanh (WF unc Def [hdecl : hbody ] + bF unc Def ) 2d2 + d

While→ cond, stmt hW hil e = tanh (WW hil e [hcond : hstmt ] + bW hil e ) 2d2 + d

DoWhile→ cond, stmt hDoW hil e = tanh (WDoW hil e [hcond : hstmt ] + bDoW hil e ) 2d2 + d

For→ init, cond, next, stmt WF or 0[tanh (WF or 1[hinit : hcond : hnext ] + bF or 1 ) : hstmt ] + bF or 0 5d2 + 2d

If→ cond, iftrue hI f = tanh (WI f [hcond : hi f t rue ] + bI f )
2d2 + d

If→ cond, iftrue, iffalse hI f =max (tanh (WI f [hcond : hi f t rue ] + bI f ), tanh (WI f [hcond : hi f f alse ] + bI f ))

Switch→ cond, stmt hSwitch = tanh (WSwitch [hcond : hstmt ] + bSwitch ) 2d2 + d

Case→ expr, stmt1, . . . , stmtk hCase = tanh (WCase [hexpr : LST MCase (hstmt 1, . . . , hstmt k )] + bCase ) 10d2 + 5d

Seq→ child1, . . . , childk hseq = LST Mseq (hchild1, . . . , hchildk ) 8d2 + 4d

Note: LST M () takes a sequence of input and outputs the last hidden state.

different Ftype . The set of parameters of a particular type of semantic unit is shared among all
occurrences of this semantic unit type. For those subtrees without Ftype , they share another set of
container parameters.

An intuitive demonstration between MTN-a and MTN-b is shown in Figure 3. In this figure,
different colored boxes indicate different container parameters.

3.2 Neural Modules for Different Semantic Units

The semantic units of C can be divided into several categories:

• Units that define logic structure and control flow information, like branches and loops.
• Units that contain data information, like a variable declaration.
• Units that contain calculation information, like operators and variable assignments in

expressions.

In this article, we mainly focus on semantic units that represent the basic structure of programs.
We design eight different neural network modules with different parameters for different semantic
units. First, there are seven kinds of nodes related to program logic structure: FuncDef, While,
DoWhile, For, If, Switch, and Case. Apart from these kinds of nodes we mentioned before, there
is also a group of nodes of which the number of their children is not definite, but their children
are a sequence of nodes. We also design a neural module Fseq for these nodes. We show the whole
set of modules in Table 1 and report the number of parameters of these modules given the hidden
size d . In the following section, we will give the implementation of these neural modules and shed
some light on the thoughts behind the structure of them.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 31. Pub. date: September 2020.



Modular Tree Network for Source Code Representation Learning 31:7

Fig. 4. Structure of FuncDef, While, DoWhile, and Switch modules.

Fig. 5. Structure of the For module.

Fig. 6. Structure of the If module: without an else statement (a) and with an else statement (b).

3.2.1 FuncDef, While, DoWhile, and Switch. These four types of nodes are similar in the fol-
lowing ways: they all have two children, and the semantics of their left children differs from their
right children. Thus, we use an RvNN module to model them. Figure 4 shows the module structure
for them. To address the semantic differences between these four types of nodes, we set different
parametersW and b for their modules.

3.2.2 For. A For node has four children: an initialization statement, a condition statement, a
next iteration statement, and a loop body. The first three parts form the controller of a loop, so we
use an RvNN unit to model them, and feed the intermediate output of this unit and the state of the
loop body node to another RvNN unit. Figure 5 shows the structure of our For module.

3.2.3 If. Different from previously mentioned AST nodes in C, an If node does not always have
the same number of children. An If node can have two or three children, depending on whether it
contains an else statement. Figure 6 shows the module structures for If nodes. If an If node does
not contain an else statement, we simply use an RvNN to combine its condition node and branch
body node. If an If node has an else statement, we separately combine the condition node with
the iftrue statement and the iffalse statement with two recursive units with the same parameters.
Then we compute the element-wise max for the output of the two recursive units to get the final
output of the If module.

3.2.4 Case. Since Case nodes are a component of switch-case statements, we also design a
module for them. Figure 7 shows the module for Case nodes. The children of a Case node can be
divided into two parts: a constant expression, which is the label of the current Case branch, and
the body of the branch, which is a sequence of statements. Since the statements of a Case branch
are executed sequentially, we use an LSTM network to encode the root nodes of these statements.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 31. Pub. date: September 2020.



31:8 W. Wang et al.

Fig. 7. Structure of the Case module.

The last hidden state of this LSTM and the state of the constant expression node are passed into a
recursive neural network layer.

3.2.5 Nodes with Sequential Children. In C AST, there are some other types of nodes whose
children form a sequence of arbitrary length. A typical example is the Compound node, which
denotes a code block, and its children are a sequence of statements. We also use an LSTM to
encode these children and take the last hidden state of the LSTM as the output.

In summary, for hidden size d , the number of parameters for all types of modules are 33d2 +

16d . Thus, an MTN-a model contains 8d2 + 4d + 33d2 + 16d = 41d2 + 20d parameters, whereas an
MTN-b model has 9(8d2 + 4d ) + 33d2 + 16d = 105d2 + 52d parameters.

3.3 Calculate Representation for Code Snippets by MTN

To calculate vector representation of source code with MTN, we need to parse our code snippets
into ASTs first. After we obtain the AST of a code snippet, we build an MTN for it with the same
structure of its AST. In an AST of C, each semantic unit only corresponds to a single parent node
type so that we can determine the type of semantic unit only by the parent node in it. Therefore,
for nodes in {FuncDef, While, DoWhile, For, If, Switch, Case}, we place corresponding MTN units
in their position. For other nodes, we first check whether their children contain a sequence. If they
do, we place MTNseq in the position of the parent of sequences. Else we place a traditional child-
sum tree-LSTM unit in their position. After we finish the building of MTN, we can calculate the
hidden state of each node in a bottom-up way, and the hidden state of the root node is engaged
as the representation of the whole program. The input vector x at every node is their initial word
embedding.

4 APPLICATIONS

In the preceding section, we described the general process of calculating the vector representation
of a C AST by MTN. In real application scenarios, we first use training data and ground truth labels
to train MTN networks, then evaluate testing data on our trained mode. In this section, we show
the training and evaluation process of MTN on two program analysis tasks: program classification
and code clone detection.

4.1 Program Classification

For the program classification task, we meant to classify a C code snippet by its functionality. Sup-
pose that we aim to classify source code into M classes; after we get the code vector representation
v , we calculate the M-dimension predicted result ŷ by applying a fully connected neural network
layer:

ŷ =Wv + b .
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Table 2. Statistics of Our Program Classification

Dataset on the Appearances of Different

Structural AST Nodes

Node Type Count of Appearances
FuncDef 67,806
While 13,315
DoWhile 1,645
For 102,870
If 116,152
Switch 625
Seq 519,425

When training, we use the cross-entropy loss function:

loss(ŷ,y) = −log

(
exp(ŷy )

Σj exp(ŷj )

)
,

where y is the ground truth class label, an M-dimension one-hot vector. During evaluation, we
predict the class label by picking the dimension with the biggest value from ŷ (i.e., argmaxkŷk ).

4.2 Code Clone Detection

The core task of code clone detection is to determine whether two code fragments are duplicates.
In this case, these two code fragments are passed through two separate MTNs with shared pa-
rameters. After we get their representation v1 and v2, we measure their relatedness by computing
their cosine similarity ŷ = v1 ·v2

|v1 | · |v2 | . Because ŷ ∈ [−1, 1], we set the ground truth of true clone pairs

to 1, and we set it to –1 for false clone pairs. When training, the loss is computed by mean squared
error:

1

d

d∑
i=1

(yi − ŷi )2,

which is reduced to squared error since the dimensiond of ŷ is 1. During the evaluation, we predict
whether a pair of code fragments is a clone by

isClone =

{
True ŷ > 0
False ŷ ≤ 0

. (10)

5 EXPERIMENTS

5.1 Datasets

5.1.1 Program Classification. Our dataset is collected from the online student programming
website POJ.1 A smaller version of this dataset is already utilized by multiple tasks [7, 33, 34]. We
consider programs to solve the same problem belonging to the same class. Our dataset contains
58,600 C program files from 293 programming problems, each of which contains 200 files. On
average, each file contains 22.8 lines of code and 116.62 AST nodes when transferred into the AST.
We split these files by 8:1:1 as training, validation, and test sets. Table 2 shows the quantity of
several kinds of nodes in the whole set. We find that the number of nodes with sequential children
far exceeds other structural nodes. For and If nodes have a very high frequency of appearance,
whereas the counts of DoWhile and Switch nodes are rather small.

1http://poj.org/.
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5.1.2 Code Clone Detection. Code clones can be categorized into four types [26]: type 1, which
includes identical fragments except for variations in whitespace, comments, and layout; type 2,
which includes identical fragments except for variations in identifier names and literal values;
type 3, which are syntactically similar fragments that differ at the statement level (the fragments
have statements added, modified, or removed); and type 4, which are syntactically dissimilar frag-
ments that implement the same functionality. Type 4 clones are the hardest to detect, so we mainly
focus on type 4 clones in our experiment.

To show the advantage of MTN for detecting type 4 clones, we engage the OJClone dataset
[34] for the clone detection task. OJClone contains 15 different programming problems, and each
problem contains 500 source code files in C. The average number of lines of code in OJClone
is 35.25 [34]. We consider that two different code fragments from the same problem are a true
type 3 or 4 clone pair, whereas two code fragments from different problems are a false clone pair.
We split all 7,500 code fragments by 8:1:1 for training, validation, and testing to guarantee that the
code fragments in the validation and test sets do not overlap with those in the train set. As there
are far more false clone pairs than true clone pairs, we apply up-sampling to the true clone pairs
in the training set. For the training set, we randomly sample the same number of 20,000 positive
clone pairs and negative pairs from the training code fragments. For the validation and test set,
we sample 5,000 pairs from their set of code fragments regardless of whether they are positive or
negative clone pairs.

5.2 Experiment Settings

We apply pycparser2 to generate ASTs for C programs. In pycparser, there are two types of nodes:
the identifier node and the non-identifier node. Non-identifier nodes only contain a type, whereas
identifier nodes contain a type and at least one (most times only one) value. In our dataset, the
names and values of identifiers used by programmers are highly related to the problem description.
Therefore, these details may provide extra benefits for classifying programs. Since we want to
classify programs only by their algorithms, this information of identifiers needs to be pruned. Thus,
in our default settings, we only keep the node type as the input for both the program classification
and the clone detection tasks. To show the effect of identifiers, we also add the results for MTNs
when names or values are used as the input of identifier nodes.

In the program classification task, we set the dimension of initial node embeddings and tree-
LSTM cells of MTN-b model to 200. In the clone detection task, we set them to 100. The MTN-b
model for program classification contains 105 × 2002 + 52 × 200 ≈ 4,210K parameters. For tree-
LSTM and MTN-a, we use larger hidden sizes so that their number of parameters is similar to
MTN-b (e.g., to compensate the parameter differences, in the program classification task we set
the hidden size of tree-LSTM to 720 and MTN-a to 320). We use an adaptive moment estimation
(ADAM) [19] optimizer with a learning rate of 0.001 to train our model. For all models, the node
embeddings are initialized with random-value vectors and learned through the training process.
We implement our model in PyTorch3 and train the models on an NVIDIA Tesla P100 GPU.

For tree-structured neural network models like MTN and tree-LSTM, batch processing is dif-
ficult since we need to build different trees for different input data. However, we still want to
optimize our model with mini-batches, so we perform manually gradient accumulation. In manual
gradient accumulation, we first divide our dataset into batches, which is the same as for conven-
tional batch processing. For each input example in a batch, we build a network following the input
AST structure, feed the input example to it, and calculate the loss. Then we manually accumulate

2https://github.com/eliben/pycparser.
3https://pytorch.org/.
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the gradient computed by each example and perform optimization on the accumulated gradient. In
our experiment, we set the training batch size to 32. Currently, there exist some dynamic batching
techniques that can batch dynamic neural networks by putting instances of the same operation
together [25], but so far PyTorch does not support these techniques. In the future, if we require a
higher running speed of MTN, we can reimplement our models with other deep learning libraries
that support dynamic batching.

5.3 Baselines

In both tasks, we compare our MTNs to several sequential and tree-structured neural network
models:

Sequential models: We employ a standard LSTM network, a bi-directional LSTM, and a one-
dimensional CNN as our baselines. For CNNs, we follow the approach of Kim [18], who used
multiple filter window sizes (3,4,5). In all of these sequential models, we apply depth-first traverse
to convert an AST into a sequence of tokens as input for the model, the same as Boopchand et al.
[8] and Li et al. [20].

Tree-structured models: We take child-sum tree-LSTM [31] and TBCNN [24] as our baselines. We
also compare our results to Code-RNN [22], a modified RvNN that was originally used to generate
comments for source code. Slightly different from Liang and Zhu [22], we employ ASTs for input
data instead of parse trees (concrete syntax trees).

Graph-based models: We also compare our models with gated graph neural networks (GGNNs)
[21]. GGNN has already been used in several programming language–related tasks such as variable
naming and identifying variable misuse [2, 9]. In our experiment, we basically follow the approach
of Brockschmidt et al. [9] to build program graphs on ASTs. As our approaches do not consider the
identifier values, we omit the dataflow edges and only use Child, NextToken, and NextSib edges.

For the code clone detection tasks, we also include the baselines used by Wei and Li [34]:
Deckard [17]: A popular AST-based clone detection tool based on a characterization of subtrees

with numerical vectors.
DLC (Deep Learning for Code Clones): A deep learning–based approach proposed by White et al.

[35]. It converts ASTs into binary trees and uses RvNNs to represent them. Unlike White et al.
[35], we train the model with supervised clone labels, same as MTNs.

SourcererCC [27]: A token-based clone detector that achieved strong recall and precision on
clones of types 1 through 3.

5.4 Research Questions and Results

We investigate the following research questions by showing and analyzing our experiment results.

RQ1: How does our model perform in the program classification task?

Our results for the program classification task are shown in Table 3. The bold lines in the table de-
note the best results in each setting. Our models—MTN-a and MTN-b—both achieve results better
than all sequential and tree-structured baselines. This indicates that in addition to tree structures,
modeling differences among semantic units in ASTs can provide more insightful information to
neural network models. After applying identifier information, the accuracy of MTN is further im-
proved, which is consistent with our anticipation. An unexpected finding is that GGNN performs
poorly on the program classification task, with its accuracy even lower than sequential models.
This is likely because the GGNN model cannot well handle the hierarchical relationship between
AST nodes.

In the program classification task, we run tree-LSTM and each MTN model 10 times and report
their average accuracy. To determine whether the accuracies of MTNs are significantly higher
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Table 3. Classification Accuracy for the

293-Class Program Classification Task

Method Accuracy
CNN 68.3%
LSTM 80.8%
Bi-LSTM 80.7%
Code-RNN 64.8%
TBCNN 79.0%
GGNN 61.0%
Tree-LSTM 85.2%
MTN-a 86.5%

MTN-b 86.2%
MTN-a w/ id 92.6%
MTN-b w/ id 92.9%

Fig. 8. Test accuracy after every epoch of training in the program classification task.

than tree-LSTM, we run the Wilcoxon signed-rank test [36] on tree-LSTM with both MTN-a and
MTN-b. In both tests, the p-value is smaller than 0.05, meaning that our improvement is significant.
Although the average accuracy of MTN-a is slightly higher than MTN-b, our significance test
shows that there is not a significant difference between their performance.

Next we compare the converging process among models on the program classification task. A
model that converges faster can reach maximum accuracy in fewer training epochs, thus indirectly
reduce its training time. We display the convergence of our model by recording the test accuracy
after each epoch of training. Figure 8 illustrates the changing process of test accuracy during the
training of MTN and tree-LSTM. During the first epochs, MTN models show substantial improve-
ments over tree-LSTM. Compared to tree-LSTM, MTN models can achieve an acceptable result in
the early phase of training and reach maximum accuracy sooner.

In real-world applications, it is often difficult to acquire a large number of programs with labeled
categories to train neural network models, so we make further analysis on the performance of our
models with fewer training data. We down-sample the training set by certain proportions and
keep the validation and test set unchanged. The results of different down-sampling proportions
are shown in Table 4. We can observe that when we shrink the training set, the performance gap
between MTNs and tree-LSTM becomes larger. This phenomenon indicates that MTNs are more
advantageous for fewer training data.
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Table 4. Results of the Program Classification Task When We

Subsample the Training Set by Different Proportions

Down-Sampling Proportion
Results

Tree-LSTM MTN-a MTN-b
12.5% 70.0% 72.6% 72.2%
25% 77.1% 79.3% 78.4%
50% 82.0% 83.2% 83.5%

Table 5. Precision, Recall, and F1 Score of the Code Clone Detection Task

Method Precision Recall F1
Deckard 0.6 0.06 0.11
DLC 0.70 0.18 0.30
SourcererCC 0.97 0.1 0.18
CDLH 0.21 0.97 0.34
CNN 0.29 0.43 0.34
LSTM 0.19 0.95 0.31
Bi-LSTM 0.18 0.97 0.32
Code-RNN 0.26 0.97 0.41
GGNN 0.20 0.98 0.33
Tree-LSTM 0.27 1.0 0.43
MTN-a 0.84 0.98 0.90
MTN-b 0.86 0.98 0.91

MTN-a w/ id 0.91 0.98 0.95

MTN-b w/ id 0.91 0.99 0.95

RQ2: How does our model perform in the clone detection task?

Table 5 shows the result of the code clone detection task. For this task, we evaluate the precision,
recall, and F1 score, where we set true clone pairs as positive samples. Similar to the program
classification task, both MTN-a and MTN-b also outperform all of the baselines in F1 scores. MTN
models significantly outperform non-neural-network baselines in terms of recall, mainly because
MTN models are effective at detecting type 4 clones where the baselines failed. When compared
to neural network models, MTNs achieve remarkable promotion in precision compared to most
baselines. The performance of MTN-b is slightly higher than MTN-a. It is worth noting that most
neural network baselines (e.g., tree-LSTM) have unbalanced precision and recall. To find the reason
behind this, we take a look at the learned similarity scores between code pairs in tree-LSTM and
MTN. Figure 9 shows the distribution of similarity scores predicted by MTNs and tree-LSTM on
the OJClone test set. We can see that for positive clone pairs, the prediction of tree-LSTM and
MTNs is similar. However, for negative clone pairs, the behavior between tree-LSTM and MTN is
highly different. Although the predictions of MTN-a and MTN-b are close to –1, the predictions
of tree-LSTM are much higher, of which most of them fall in the interval of [–0.4,0.2]. Although
we can improve the precision of tree-LSTM by increasing the threshold between positive and
negative clones, the threshold must be chosen delicately since the gap of scores between positive
and negative pairs is very small (in this case, [0.4,0.6]). The selection of a data-specific threshold
can be difficult if we do not have a proper validation set. However, the predictions of MTNs are
close to 1 and –1, meaning that a simple choice of threshold (here 0) can be data independent.
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Fig. 9. The distribution of similarity scores predicted by MTNs and tree-LSTM for the positive and negative

clone pairs.

Fig. 10. The training loss and the test set precision/recall/F1 score of MTN-a, MTN-b, and tree-LSTM during

the training procedure of the clone detection task.

For the code clone detection task, we also analyze the convergence of MTN models. Figure 10
shows the average training loss per sample and the precision/recall/F1 score of the validation set
during the training procedure. We can observe that compared to tree-LSTM, MTNs can converge
to a much lower loss. Although the loss of tree-LSTM is higher than MTNs, we make sure that
tree-LSTM has come to convergence, since in our clone detection experiments, the loss of tree-
LSTM finally drops to around 0.4 and does not drop further even if we continue to increase its
hidden size (e.g., we run tree-LSTM on clone detection with hidden size 720, which is the same as
the program classification task, and the parameter size is nearly 4 times as tree-LSTM for clone
detection reported in this article). Moreover, this higher loss than MTNs also exists in several other
baselines, including both sequential models like LSTM and more powerful models like Code-RNN
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Table 6. Detailed Results for MTNs Compared to Tree-LSTM

on the Clone Detection Task

Model p@r=0.8 p@r=0.9 p@r=0.95 p@r=0.99 ROC_AUC
Tree-LSTM 0.861 0.831 0.816 0.677 0.994
MTN-a 0.984 0.970 0.934 0.470 0.995
MTN-b 0.996 0.983 0.977 0.450 0.997

Fig. 11. The precision-recall curve of MTNs and tree-LSTM on the OJClone test set.

and GGNN, which further prove that this phenomenon is unlikely relevant to model capacity. The
differences in learning speed are also indicated by the changing process of precision and F1.

To have a more comprehensive understanding of the difference between our model and base-
lines on the clone detection tasks, we further compare MTNs with the best-performing baseline
tree-LSTM on several other metrics, including the precision values for specific recalls, and the
area under the receiver-operating characteristic curve (ROC_AUC). Table 6 shows the precision
values for different recalls and the ROC_AUC score for three models. MTN-b achieves the highest
ROC_AUC among three models, and generally its precision is higher than baseline models except
for extreme circumstances when the recall is close to 1. We also draw the precision-recall curve
for these three models in Figure 11. We can clearly see that when the precision is high (>0.8), the
recall of MTN-a and MTN-b are significantly higher than tree-LSTM.

Additionally, we make a visualization of the embeddings of code snippets learned by MTN
through clone detection. Figure 12 shows the distribution of 15 classes of programs in the OJ-
Clone dataset. We can see that for programs from the same question, their embeddings are similar,
and the boundaries between most questions are clear. Thus, we can believe that MTN can learn
semantic-aware embeddings for source code snippets even without direct class labels, which shows
the potential of combining MTN with unsupervised learning.

Next, we will display some example clone pairs to show the capability of MTN intuitively.
Figure 13 shows three false clone pairs in OJClone that are wrongly predicted as positive by tree-

LSTM. We can see that when two code fragments have some similar patterns, they both include two
function declarations (a), or both contain If statements inside loops ((b) and (c)). As mentioned
previously, compared to MTNs, tree-LSTM has slightly higher recall and much lower accuracy.
Therefore, for code pairs with similarities, tree-LSTM has a higher chance to predict them as a
clone, but MTNs can more accurately capture their semantics and give the correct prediction.
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Fig. 12. A two-dimensional visualization of code embeddings learned by MTN-b in the clone detection task

using t-SNE.

Figure 14 shows a true clone pair that both tree-LSTM and MTN-b predicted as false. Although
these two programs solved the same question, their structure and algorithm are quite different.
Even a human reader cannot quickly determine that they implemented the same functionality.

Figure 15 shows a false clone pair that both tree-LSTM and MTN-b predicted as true. Although
the questions they aimed to solve are different, these two programs both involve structure and
linklist operations. After a quick peeks, a human reader may find that they are very similar in
structure.

RQ3: How does each module of MTN contribute to our results?

To analyze the contribution of each different MTN unit in our models, we perform an abla-
tion study on the clone detection task. Each time, we separately remove an MTN unit from our
MTN-b model and replace it with a traditional child-sum tree-LSTM unit. We focus on five dif-
ferent MTN units that have higher frequencies than other units: MTNFuncDef , MTNF or , MTNI f ,
MTNW hile , and MTNSeq . Table 7 shows the results of our ablation study. We can observe that re-
moving MTNSeq has the biggest impact on the performance of MTN-b, and its precision and F1 are
only slightly higher than tree-LSTM, implying that handling the order of statements and expres-
sions is the key to MTN’s improvements. For other MTN units, removing one of them only causes
a slight drop in F1 or ROC_AUC. This is probably because the structures of subtrees corresponding
to these units are fixed (e.g., an If node always has a condition child and a loop body child), so a
simpler model (tree-LSTM) can already learn enough information from these structures, and the
effect of MTN units are limited.

RQ4: What are the time and memory efficiency of MTN?

We compare the time and memory efficiency of MTN models with tree-LSTM since they are
all tree-structured models. In Table 8, the first two rows show the running time of performing
an epoch of training and testing on our clone detection task, and the third row shows the GPU
memory cost during training.

We can see that when equipped with equal numbers of parameters, the training and testing
time of MTNs are longer than tree-LSTM only by a tiny scope (<6%). Within two MTN mod-
els, the running speed of MTN-b is faster than MTN-a, which means that a larger hidden size of
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Fig. 13. Examples of false clone pairs that MTN-b correctly predicted but tree-LSTM failed to predict.

MTN-a brings more computational cost than MTN-b. When we look at the memory cost, the rank-
ing for these three models is tree-LSTM >MTN-a >MTN-b. Since larger hidden size leads to larger
intermediate tensors, this phenomenon fits our expectations. Generally, with the same number of
parameters, MTN-b is more time- and memory efficient than MTN-a, and both models are nearly
equally as efficient as tree-LSTM.

6 THREATS TO VALIDITY

The phrase threats to internal validity relates to the implementation of the CDLH baseline.
In CDLH, Wei and Li [34] did not give the specification of their model, so we reimple-

mented their model using PyTorch. The hyperparameters of CDLH is the same as our MTN
models.

The phrase threats to external validity relates to the dataset we used and the generalizability
of our model. Because Wei and Li [34] did not give the specification of their OJClone dataset, we
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Fig. 14. An example of a true clone pair that both tree-LSTM and MTN-b predicted as false.

Table 7. Ablation Results for MTN-b on the Clone Detection Task

Model Precision Recall F1 ROC_AUC
MTN-b 0.859 0.975 0.913 0.997

-FuncDef 0.826 0.991 0.901 0.997

-For 0.775 0.985 0.868 0.997

-If 0.779 0.985 0.870 0.996
-While 0.769 0.972 0.859 0.996
-Seq 0.275 0.991 0.431 0.995

Table 8. Time and GPU Memory Cost for MTN and Tree-LSTM

in Our Clone Detection Task

Tree-LSTM MTN-a MTN-b
Training Time (s) 28,871 29,993 29,366
Test Time (s) 1,720 1,810 1,793
GPU Memory Cost (MB) 743 731 721

reproduced all of their baselines and CDLH on our OJClone dataset. Still our approach is improved
over theirs by a substantial margin. Since our approach mainly works for C language, we evaluate
it using OJClone. However, the idea of MTN is to build different neural modules for different
grammar production rules, and we can extend our model to OO languages by building neural
modules for OO production rules. In the future, we would like to evaluate MTN on some OO
language benchmarks like BigCloneBench [30].

7 RELATED WORK

Source code representation learning is a task that gets a distributed representation of a source
code snippet through machine learning. In the field of source code representation learning, most
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Fig. 15. An example of a false clone pair that both tree-LSTM and MTN-b predicted as true.

models obtain distributed representations in a supervised manner. Supervised source code rep-
resentation models are trained by tasks with labeled data, such as program classification, defect
prediction, clone detection, and code summarization, and an intermediate result is obtained as the
representation.

In this section, we first take a brief view of previous approaches in learning source code repre-
sentations. In most of these tasks, the proposed models come from the natural language processing
community. The neural network models for source code modeling can be divided into three cate-
gories: sequential, hierarchical, and tree-structured models. Then we show some previous work on
modeling different semantic compositions in non-programming language tree structures, which
is slightly related to our work, and we show their insufficiency for working on ASTs.

7.1 Sequential Models

Like natural language, source code snippets can be treated as sequences of tokens. Most investi-
gations employ lexical analyzers to decompose source code into lexical tokens. Iyer et al. [16] pro-
posed Code-NN, which uses an LSTM [13] network with attention to generate natural language
descriptions from C# code snippets and SQL queries. Allamanis et al. [3] applied a multi-layer
CNN with attention on Java source code to generate short, name-like summaries. Wang et al. [32]
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engaged deep belief networks [12] for defect prediction in several open source Java projects. Apart
from models based on sequences of lexical tokens, Bhoopchand et al. [8] and Li et al. [20] serialized
AST by depth-first traversal and applied RNNs to learn representations of code snippets for code
completion. Although these sequential models were easy to implement and often fast to execute,
they abandoned the explicit higher-level structural information of source code.

7.2 Hierarchical Models

Slightly more complicated than sequences, programs can also be represented as two-level hierar-
chies. Each program statement, often taking up one line of code, is a sequence of lexical tokens,
and the whole program is a sequence of lines of code. Huo et al. [15] used one-dimensional CNNs
for both within-line and cross-line modeling for program bug localization, whereas Huo and Li
[14] applied a CNN for within-line and LSTM for cross-line on the same task. Although these
models utilized the sequential structure between lines of code, they failed to capture some kinds
of logic structure within code lines, because lines of code in some program structures, like loop
and branches, are not executed sequentially.

7.3 Tree-Structured Models

Most tree-structured neural models for source code are built on program ASTs. The basic compo-
nent of these tree-structured models is a neural network unit that calculates the representation
of a semantic unit. To represent tree structures, Socher et al. [29] proposed RvNNs. In RvNNs,
the vector embedding of a non-leaf node is calculated by its children with a fully connected neural
network, and the embedding of the root node is considered as the representation of the whole tree.
However, traditional RvNNs require the trees to be binary, whereas the ASTs of source code are
not. One way to apply RvNNs to ASTs is converting ASTs into binary trees [35], but the converting
process makes the ASTs much deeper and the model much harder to train. To adapt RvNNs for
source code, Liang and Zhu [22] proposed Code-RNN, which operates on Java parse trees to learn
source code representations for program classification and comment generation. Tai et al. [31]
proposed tree-LSTM, a tree-structured RvNN framework augmented with LSTM units. In a basic
tree-LSTM unit, hidden states of child nodes are passed into an LSTM-like neural network unit and
combined with the token embedding of the parent node to get the hidden states of the parent node.
Tree-LSTM contains two types of models: child-sum tree-LSTM and n-ary tree-LSTM. Child-sum
tree-LSTM can be built on trees with an indefinite branching factor, but it does not consider the
order of children. N-ary tree-LSTM is capable of capturing the order of children, but it requires
that the branching factor of the tree must be known. Wei and Li [34] converted ASTs into binary
trees, then applied binary tree-LSTMs to detect code clones in Java and C. Mou et al. [24] intro-
duced TBCNN, whose basic unit is a single dynamic convolution kernel over all semantic units of
an AST. Unlike recursive networks, TBCNN did not calculate representations bottom-up, but by
first calculating representations of semantic units separately, then applying pooling over all se-
mantic unit representations to get the final representation. They evaluated their model on tasks of
program classification and bubble sort detection. These tree-structured networks all use the same
neural unit with the same parameters for different semantic units. Apart from tree-structured
models on ASTs, Allamanis et al. [2] augmented ASTs with edges of variable calls into a graph,
then built GGNN [21] on which to solve variable misuse and variable naming tasks in C#. Unlike
other AST-based models, this model requires additional execution trace information that cannot
be obtained by a static parser. Alon et al. [4, 5] extracted syntactic paths from ASTs and used an
attention mechanism to aggregate the embeddings of all paths.
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7.4 Modeling Different Semantic Compositions in Natural Language

The differences among semantic units also exist in tree structures other than ASTs, like natural
language parse trees. In these areas, researchers often use “composition” to refer to tree semantic
units, mainly because in natural language constituency trees, a non-leaf node does not contain its
own semantic information, where its semantics are composed by leaf nodes. Some researchers pro-
pose to use different compositional functions for different compositions [6, 10, 28]. For example,
Socher et al. [28] proposed a syntactically untied RvNN where each different sibling combination
in a probabilistic contex-free grammar is assigned by a different weight matrix. Dong et al. [10]
introduced AdaRNN, an RvNN with multiple compositional functions for sentiment classification.
During the compositional phase, the composition result is calculated based on a probabilistic dis-
tribution over all composition functions. Arabshahi et al. [6] modeled mathematic expressions
with a tree-LSTM in which each mathematical function was associated with a different set of pa-
rameters. Liu et al. [23], instead of defining separate composition functions in advance, applied
a meta-network of the same structure as the original network on the input data to produce dy-
namic parameters for the original network. Although these approaches pointed out that using
different compositional functions for different semantic compositions is useful, the differences be-
tween compositional functions are only in the parameters. Moreover, most of these models only
work for binary trees with simple structures, like natural language constituency trees, whereas
program ASTs are often much deeper and wider. Thus, these models cannot be properly applied
to program ASTs.

8 CONCLUSION AND FUTURE WORK

In this article, we propose MTN, a modular tree-structured RNN that can capture more detailed se-
mantic information than previous tree-structured neural networks. We apply MTN in two tasks on
C programming language: program functionality classification and code clone detection. Our re-
sults show that MTN outperforms previous sequential and tree-structured neural network models
due to its exploitation of semantic differences between AST semantic units.

In the future, one of our priorities is to extend MTN to other programming languages. Another
task worth investigating is to explore the potential of MTN for program generation. Most existing
AST-based program generation tasks require the decoder to generate a program from the root node
to leaves, so MTN cannot be used as the decoder for program generation. But MTN can be used
to encode the partial tree during the generation process, providing the decoder with structural
context information.
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